


Ding et al. Light: Science & Applications          (2022) 11:130 Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-022-00825-5 www.nature.com/lsa

ART ICLE Open Ac ce s s

An Optoelectronic thermometer based on
microscale infrared-to-visible conversion devices
He Ding 1✉, Guoqing Lv1, Xue Cai2, Junyu Chen2, Ziyi Cheng1, Yanxiu Peng1, Guo Tang2, Zhao Shi2, Yang Xie2,
Xin Fu3, Lan Yin 3, Jian Yang1, Yongtian Wang 1 and Xing Sheng 2✉

Abstract
Thermometric detectors are crucial in evaluating the condition of target objects spanning from environments to the
human body. Optical-based thermal sensing tools have received extensive attention, in which the photon
upconversion process with low autofluorescence and high tissue penetration depth is considered as a competent
method for temperature monitoring, particularly in biomedical fields. Here, we present an optoelectronic
thermometer via infrared-to-visible upconversion, accomplished by integrated light receiving and emission devices.
Fully fabricated thin-film, microscale devices present temperature-dependent light emission with an intensity change
of 1.5% °C−1 and a spectral shift of 0.18 nm °C−1. The sensing mechanism is systematically characterized and ascribed
to temperature dependent optoelectronic properties of the semiconductor band structure and the circuit operation
condition. Patterned device arrays showcase the capability for spatially resolved temperature mapping. Finally, in vitro
and in vivo experiments implemented with integrated fiber-optic sensors demonstrate real-time thermal detection of
dynamic human activity and in the deep brain of animals, respectively.

Introduction
Spatially and temporally resolved temperature sensing

with high precision is critically important and has wide
applications in diverse fields, such as industrial manu-
facturing, environmental, and healthcare monitoring1–5.
Specifically, real-time detection of temperature variations
in biological systems is essential for point-of-care diag-
nostics and treatment5–7. Point contact temperature
monitoring is commonly based on thermoelectric or
thermoresistive sensors, but such wired electrical designs
usually incorporate metallic embodiments that are easily
intervened by electromagnetic waves, particularly during

magnetic resonance imaging (MRI)1,8. On the other hand,
optical-based sensors offer attractive solutions in tem-
perature monitoring for biomedical diagnosis, owing to
their remote detection, minimal invasion, immunity to
electromagnetic interferences, and high resolution1,9–13.
These optical sensing modalities can be based on the
luminescence intensity, wavelength, peak width, and/or
decay lifetime1,11,12. Infrared thermometers and imagers
capture spatially resolved temperature information in a
non-contact mode by collecting blackbody radiation
emitted from the targeting object, but the devices only
detect surface temperatures, and the results are highly
influenced by surface emissivity13,14. Thermal sensors
based on optical cavities exhibit spectrally resolved optical
responses with very high precision3,8, but their measure-
ments usually rely on sophisticated spectrometric systems
in stable fixtures that could limit their biomedical appli-
cations. Phase changing materials like liquid crystals also
present temperature-dependent color changes, but their
perceived color can be limited by the environment light-
ing, viewing angles, polarizations, etc15–17.
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Alternatively, temperature readout can be aided by the
deployment of photoluminescent (PL) materials or devi-
ces, with the thermal status influencing their emission
intensity, peak wavelength, decay lifetime, etc.9–12,18–20.
These thermally dependent luminescent sensors provide
visualized temperature information with a high spatio-
temporal resolution, offering tremendous advantages and
opportunities in areas like bioimaging9–12,20,21. While the
temperature-dependent PL mechanism via the down-
conversion process requires a short-wavelength excitation,
upconversion processes that transform near-infrared
(NIR) photons in the range of the biological transpar-
ency window (around 650–950 nm) to visible ones are
more advantageous and have emerged as an area of
interest, particularly for biomedical applications9,11,22–27.
Compared to the downconversion counterpart, such an
upconversion mechanism mitigates the biological auto-
fluorescence, facilitates tissue penetration, and yields
conveniently-visualized and easily-captured visible light
signals, presenting a more suitable method for sensing in
biological systems9,11,23–26,28. As a representative and the
most commonly used upconversion material, lanthanide-
based nanoparticles leverage the PL emissions from two or
more independent bands that exhibit strong temperature
dependence, which have been applied for thermal sensing
in biomedicine19,23,25,29. Recently, optoelectronic NIR-to-
visible upconversion devices based on designed semi-
conductor heterostructures have been developed, exhibit-
ing a linear response, fast dynamics, and low excitation

power30–32. As a microscale device that can be implanted
into the animal body, such an optoelectronic design shows
promise for various optical sensing applications.
In this study, we systematically investigated temperature-

dependent PL characteristics of the optoelectronic upcon-
version device and demonstrated its capability for thermal
sensing. We discovered that its thermal-dependent PL
emission is determined by the band properties of semi-
conductor materials as well as the integrated device circuit
architecture. Arrays of patterned devices present spatially
resolved temperature mapping in ambient environments.
Furthermore, microscale devices integrated with fiber optics
are employed for in vitro and in vivo applications, dynami-
cally monitoring human exhalation activities and tempera-
ture variations in the deep brain of behaving animals.

Results
The proposed temperature sensing strategy is based on a

fully integrated optoelectronic upconversion device sche-
matically shown in Fig. 1a, consisting of a low-bandgap,
gallium arsenide (GaAs) based double junction photodiode
and a large-bandgap, indium gallium phosphide (InGaP)
based light-emitting diode (LED) connected in series, with
the band structure in Fig. S1. Figure 1b displays the cross-
sectional scanning electron microscope (SEM) image of the
device structure, which was grown on the GaAs substrate
with a sacrificial interlayer. As demonstrated previously, the
lithographically defined and epitaxially released microscale
devices (size ~300 × 300 μm2) realize efficient NIR-to-visible
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Fig. 1 An optoelectronic upconversion device with temperature dependent light emission. a Circuit diagram and (b) Scanning electron
microscopic (SEM) image of the optoelectronic upconversion design, including an InGaP red LED and a GaAs double junction photodiode with serial
connection. c Schematic diagram of the upconversion device for temperature sensing. d Spectra of the excitation and the upconverted
photoluminescence (PL) emission at varied temperatures (25–90 °C). e Calculated (dash line) and measured (dots) peak wavelength and PL intensity
of the upconverted red emission as a function of temperature, and the shaded range represents the standard deviation measured among 10 samples
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upconversion with a linear response and ultrafast dynamics
(Fig. 1c)31,32. In particular, here we find that the devices’ PL
emission exhibit strong temperature dependence. Figure 1d
depicts the spectroscopic performance of the device under
steady-state NIR excitation at a wavelength range of
770–830 nm (power density ~40mWcm−2, without causing
additional photothermal effects in the tissue, as shown in
Fig. S2)33, with red emission recorded by a fluorescence
microscope equipped spectrometer (details in Fig. S3).
Potentially used in the biomedical field, a temperature range
from room temperature (~25 °C) to 90 °C is selected, in
which the compositional materials (III–V semiconductors,
encapsulants, and metal electrodes) in the device are stable.
When the device temperature increases, the PL intensity
decreases, accompanied by a redshift with the emission peak
increasing from 625 nm to 637 nm. Device performance
collected from 10 different devices is presented in Fig. 1e
and S5. The measurements indicate an intensity-
temperature sensitivity of ~1.5% °C−1 and a spectrum-
temperature sensitivity of ~0.18 nm °C−1. Here the intensity-
temperature sensitivity is subjected to the relative intensity,
as the collected PL intensity is dependent on various factors,
including the excitation power, efficiency of the spectro-
meter, device geometry, etc. On the other hand, the
temperature-dependent spectral peak shift is subjected to
the absolute sensitivity, in which the emission peak wave-
length of the device depends on the bandgap of the InGaP
semiconductor, regardless of other external factors. These
experimental results are in quantitative accordance with
theoretical calculations based on the detailed balance model
for diodes and the empirical Varshni expression on the
relationship between bandgap energy and temperature (see
Supplementary Information for detailed calculations)34–36.
We further analyze the noise associated with the spectral
reading in Figure S6. Recorded at 27 °C, 48 °C, 65 °C, and
90 °C averaged signal-to-noise ratios (SNR) in the peak
wavelength range (±5 nm) is above 15, larger than the 3 dB
boundary. Taking the standard deviation of the normalized
intensity at these representative temperatures, calculated
temperature resolutions are 0.01 °C, 0.06 °C, 0.14 °C, and
0.49 °C, respectively. Similarly, resolutions of 0.04 °C, 0.08 °C,
0.11 °C, and 0.22 °C are achieved based on the peak wave-
length shift at these representative temperatures.
To further grasp the thermal sensing mechanism of the

upconversion device, we analyze the properties of indivi-
dual electronic components with the device structure. We
fabricate microscale InGaP LEDs (Fig. 2a) and GaAs
photodiodes (Fig. 2d) and evaluate their thermal beha-
viors, separately. These individual devices have the same
epitaxial structures as those in the upconversion device
and are lithographically patterned to form similar micro-
scale geometries31,32,37. The temperature-dependent elec-
troluminescent (EL) spectra of the InGaP LED (Fig. 2b, c)
are similar to those measured in the upconversion device

(Fig. 1d, e). First, the EL peak shift coincides with that of
the upconversion device, since the peak wavelength is
mostly associated with the bandgap of the InGaP semi-
conductor (Fig. S4). Second, the LED emission intensity
also decreases at elevated temperatures; however, the
intensity-temperature relative sensitivity (~1.2% °C−1) is
lower than that of the upconversion device, because the
upconverted PL intensity is defined by both the LED and
the photodiode. Compared with the LED powered by a
stable external current source, the LED in the upconver-
sion device is powered by the GaAs photodiode with
temperature-dependent efficiencies, which further reduces
the PL output at elevated temperatures. Figure 2e plots the
external quantum efficiency (EQE) spectra of the double
junction GaAs photodiode. When temperature increases,
the optical absorption edge exhibits a redshift due to the
narrowed bandgap of GaAs. Additionally, the EQE max-
imum decreases and the spectral peak slightly moves to
longer wavelengths (Fig. 2f), which can be ascribed to the
photocurrent mismatch within the double junction pho-
todiode at elevated temperatures. Figure 2g summarizes
the efficiency drops for all the devices (LED, photodiode,
and the upconversion device). These results reveal that the
intensity-temperature dependence of the upconversion
device is determined by the efficiency drops of both the
LED and the photodiode, while its spectrum-temperature
sensitivity is mostly determined by the InGaP bandgap
narrowing. Moreover, the operating conditions of the
series-connected LED and photodiode within the upcon-
version device circuit eventually determine the overall
current flowing through the LED and the emission
intensity. Figure 2h plots the current–voltage character-
istics of the LED and the photodiode at temperatures from
25 °C to 90 °C. Due to the bandgap narrowing of GaAs and
InGaP (Fig. S2), both the photodiode open-circuit voltage
and the LED turn-on voltage decrease upon heating. In
such an upconversion device circuit (Fig. 1a), both the
current and the voltage of the LED and the photodiode
should match each other. Therefore, the intersection
points of the current–voltage curves in Fig. 2h define the
working conditions of both devices, which are plotted in
Fig. 2i. It is noted that the intersection points of the
current–voltage curves are also dependent on other fac-
tors, including the device structure as well as the excita-
tion conditions. As shown in Fig. S7, temperature-
dependent intensity sensitivities can be tuned by chan-
ging the excitation intensity.
As previously demonstrated31,32, these NIR-to-red

upconversion devices exhibit ultrafast PL dynamics with
a decay lifetime of ~20 ns, enabling them to record tem-
porally resolved thermal information. In addition, these
devices can be lithographically patterned to form large
arrays of various geometries with a high yield, which also
makes spatially resolved temperature mapping feasible.
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Figure 3a illustrates a fully fabricated device, with PL
mappings taken by a microscopic camera at various
temperatures (mappings at more temperatures are shown
in Fig. S8). Figure 3b plots the corresponding relation of
PL intensity (measured by counting the averaged number
of captured photons with an imaging sensor) and tem-
perature, and the trend is similar to that obtained by a
spectrometer (Fig. 1e). Figure 3c, d, and S9 demonstrate
the dynamic response of the device during a cyclic heat-
ing/cooling process (between 26 °C and 38 °C) or a step
rise at various temperatures. It should be noted that the
long rise and decay time (>10 s) is mainly caused by the
slow response of the electric heating plate, rather than the
PL response of the device. In an environment with well
controlled temperatures, the device presents a stable sig-
nal output, and PL signals are fully reversible under cyclic

heating/cooling. Furthermore, we form an array of devices
(size ~2 cm2, with ~1500 devices) to showcase the cap-
ability of spatially resolved thermal sensing (Fig. 3e and
Movie S1). At room temperature, the device array pre-
sents a uniform red emission under NIR excitation. A hot
airflow blows on the sample, disturbs and eventually
extinguishes the emission when the surface temperature is
above ~95 °C. The visualized thermal maps can be
quantified based on the intensity-temperature calibration
obtained in Fig. 3b. In terms of spatial resolution, the
performance of the current array is determined by the
device pitch (~300 μm), which can be further reduced to
several micrometers by optimized lithographical pro-
cesses. Since the technique records PL emissions at visible
wavelengths (~625 nm), it potentially owns a spatial
resolution much higher than conventional thermal
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imagers, which is based on mid-IR or far-IR absorbing
materials and ultimately limited by the wavelength of
blackbody radiation (10–20 μm at room temperature).
The upconversion device can further be integrated with

fiber optics to form light-guided thermal sensors. Epitaxial
lift-off and transfer printing techniques produce thin-film,
freestanding devices mounting on tips of quartz fibers
(Fig. 4a, S10, and S11). Different from free space detec-
tors, such integrated fiber sensors can be interfaced with
standard optical setups and transmit all signals within the
fibers. Figure 4b outlines the setup established for fiber-
based temperature sensing, with a NIR excitation LED
(~810 nm) and a spectrometer connected to the two
branches of a Y-shaped fiber terminated by our upcon-
version fiber. In parallel, the optical system can employ a
standard thermocouple for calibration and comparison.
The encapsulated device on the fiber tip exhibit desirable
stability when immersed in the phosphatebuffered saline
solution (up to 30 days at room temperature), as well as
ideal mechanical stability (Fig. S12). Such a fiber-coupled,

portable system can be conveniently applied for biome-
dical applications, for example, monitoring the exhalation
behavior closed to the mouth of a human, as a proof-of-
concept demonstration (Fig. 4d). With the correlation
between the PL intensity/peak wavelength and tempera-
ture (Fig. S13) established from the calibration with the
thermal couple, the fiber sensor can monitor the change
of exhaled temperature with time. As shown in Fig. 4e,
S13, S14, and Movie S2, both curves match well with the
results obtained by a colocalized thermocouple, showing
determination coefficients R2= 0.90.
The fiber-coupled device can also monitor the tempera-

ture fluctuations in the deep brain. While magnetic reso-
nance based non-invasive measurements of the deep brain
temperature are possible38,39, the accuracy and system
complexity still limit their broad applications. Com-
plementary with tethered electrical sensors, such an optical-
based technique is more suitable for use in environments
with strong electromagnetic interferences, and in particular,
capable of obtaining signals during magnetic resonance
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imaging (MRI). As a consequence, some commercially
available fiber optic temperature sensors40,41 based on the
temperature-dependent optical properties, e.g., the bandgap
of a GaAs crystal material, as the thermal transduction
mechanisms have been put into practice42. Different from
these semiconductor-based sensors via downconversion
photoluminescence, our thin-film devices leverage the
thermal behaviors of semiconductor bandgaps and diode
junctions, which potentially provide improved sensitivities,
and the upconversion mechanism minimizes tissue
attenuation and autofluorescence associated with the use of
visible excitation sources. Figure 4f shows a behaving mouse
with a fiber sensor as well as a thermocouple inserted in the
same brain region via standard stereotaxic surgery (details
provided in methods). The reconstructed x-ray computed
tomography (CT) images in Fig. 4g reveal that the fiber tip is
located in the hypothalamus region. To minimize the

thermal effect of the excitation source, a pulsed NIR light
(810 nm, power 1mW, frequency 0.1 Hz, pulse width 3 s) is
applied to illuminate the upconversion device. We place the
mouse in a temperature-controlled enclosure and dynami-
cally record the optical response of the implanted fiber
sensor while changing the ambient temperature. Similarly,
temperature results can be extracted from both the PL
intensity and peak wavelength variations. Figure 4h, S13, and
S14 present the brain temperature simultaneously recorded
by the fiber and the thermocouple in a period of 3 h, and the
results indicate that these optical and electrical readouts are
in good accordance with a determination coefficient R2 >
0.97. The brain temperature increases when the mouse is in
a hot environment (~40 °C), and then drops to ~34 °C when
the heat is turned off, due to the heat dysregulation
response43,44. Therefore, this fiber-based thermal sensor can
be exploited together with other neural modulation and
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interrogation methodologies like optogenetics and fluores-
cence photometry7,45,46, making it feasible to probe the local
thermal condition of a specific brain region.

Discussion
In summary, here we present an optical thermometer

comprising integrated optoelectronic devices for photon
upconversion, with an intensity-temperature sensitivity of
1.5% °C−1 and a large spectral shift of 0.18 nm °C−1, in the
range of 20–90 °C. Compared to other upconversion
materials like lanthanide nanoparticles, dyes, and quan-
tum dots, our device provides an alternative approach for
temperature sensing, featuring high sensitivities and low-
power excitation. Based on similar semiconductor mate-
rials and architectures, large-area device arrays with a
wafer-level scale and pitches of a few micrometers can be
readily archived for thermal mapping with a high reso-
lution. The MRI-compatible, implantable sensors com-
bined with fiber optics offer both research and clinical
significance, with a potential for localized temperature
monitoring in the deep body. One limitation of the cur-
rent device design is its red emission (~625 nm), which is
not within the biological transparency window. Future
design can involve semiconductors both absorption and
emission at longer wavelengths. Overall, these materials
and device concepts establish a power tool set with vast
applications in the environment and healthcare.

Materials and methods
Device fabrication
Details about the structure and fabrication processes of

the optoelectronic upconversion devices can be found in
our previous work31,32. Via metal-organic chemical vapor
deposition (MOCVD), the InGaP red LED and the double
junction GaAs photodiode are grown on a GaAs substrate,
with an Al0.95Ga0.05As sacrificial layer between the device
layers and the GaAs substrate. The device geometry is
lithographically patterned by selective wet etching and
metallization. Thin-film, freestanding devices are formed by
eliminating the sacrificial layer, and fully released devices
are transferred printed onto the thermal release tape. The
devices are detached from the heat release tape (3198M,
Semiconductor Equipment Corp.) by heating the tape to
120 °C. Pick up the detached device with the epoxy (SU8-
3005) coated fiber tip, followed by encapsulation with
~20 μm thick polydimethylsiloxane (PDMS, Sylgard-184,
Dow Corning, base: curing agent ratio = 10:1 w/w, cured at
80 °C for 2 h) and then ~10 μm thick parylene via chemical
vapor deposition (CVD).

Device characterization
Devices photographs are taken with an Olympus IX53

microscope equipped with a Xenon arc lamp, in which the
excitation light and the emission light pass through a set of

fluorescence filters (EX ET800/60, BS T700spxr-UF1, EM
ET650sp, Chroma Tech. Corp.). The PL emission is collected
by an Andor Zyla 4.2Plus CMOS camera (an area of
~20 μm2 is chosen, acquisition time 20ms) or a spectrometer
(HR2000+, Ocean Optics). Samples are placed on a ceramic
electric heating plate for temperature control, which is cali-
brated by a thermocouple. The current–voltage character-
istics of devices are measured with a Keithley 2400 source
meter. The EQE spectra of photodiodes are collected by a
standard system (QEX10, PV Measurement). A standard
thermocouple (YET-620) with a T-type microprobe is used
for temperature reference and system calibration.

Animal studies
All animal procedures are approved by the Institutional

Animal Care and Use Committee (IACUC) at Tsinghua
University. Adult male C57BL/6 J mice (8–12 weeks) are
purchased from the Vital River Laboratory Animal
Technology (Beijing, China), and are used and housed
under standard conditions in groups (3–5 mice per cage).
Following anesthesia with an intraperitoneal injection of

0.5% sodium pentobarbital (10 mL kg−1), the scalp is
shaved and the mice are placed in a stereotaxic frame. A
hole with a diameter of ~800 μm is drilled in the
implantation site on the skull, the fiber sensor is slowly
inserted into the hypothalamus (AP: 0.5 mm, ML: 0.5 mm,
DV: −4.8 mm), and then the fiber sensor is secured to the
skull by dental cement.
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Calculations of the emission peak wavelength and intensity the upconversion 

device as a function of the temperature 

The optical and electrical properties of semiconductor materials are highly susceptible 

to temperature, so the spectral response of optoelectronic upconversion devices can be 

determined by temperature changes (1–3).  

As the temperature (T, in unit Kelvin) increases, energy band gaps (Eg) of the 

semiconductors (InGaP and GaAs) decreases, based on the empirical Varshni 

expression (3): 

 
2

g g( ) (0)
T

E T E
T




 


  (1) 

where Eg(0) is the energy bandgap at T = 0 K, Eg_InGaP(0) = 2.07 eV, Eg_GaAs(0) = 1.52 

eV, and  are fitting parameters (InGaP = × K−1, InGaP GaAs 

× K−1, GaAsfrom the literature (3, 4). Data are plotted in Figure 

S4 (blue curve). 

The emission peak wavelength () of the InGaP LED can be calculated as a 

function of the temperature: 
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where h is Planck's constant, c is the speed of light. Based on Eq.(2), we can calculate 

the wavelength vs. temperature plot in Figure 1e. 

Based on the detailed balance theory (2), the output current from the GaAs 

photodiode IPD is equal to the difference between generated carriers and recombined 

carriers: 



 PD ph th rad nradI I I I I      (3) 

where Iph is the photogenerated current and derived from the excitation light (~40 mW 

cm−2), Ith is the absorbed thermal radiation from the environment, Irad is the radiative 

current, and Inrad is the non-radiative current. 

Similarly, the input current for the LED is mainly converted to the radiative 

recombination and non-radiative recombination process. 

 LED th rad nradI I I I      (4) 

For both the GaAs photodiode and the InGaP LED, the absorbed thermal radiative 

current is defined as: 
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where k is Boltzmann’s constant, n is the refractive index, and S is the surface area of 

the device. In the temperature range of our interest (20–100 °C), the thermal currents 

are around 1×10−26 A m−2 (for InGaP) and 1×10−18 A m−2 (for GaAs), much smaller 

than the photocurrents (~1 A m−2) under excitation. Therefore, the effect of thermal 

currents can be neglected in such an integrated device. 

The radiative current is dependent on the voltage (V) and defined as: 

 rad th exp
qV

I I
kT

 
  

 
  (6) 

The radiative and absorption efficiencies of the LED and double junction GaAs 

photodiode are assumed to linearly drop from 100% to 30% and from 100% to 90%, 

respectively, from 25 °C to 100 °C, as shown in Figures 2c and 2f. The conversion 

efficiency (η) is highly dependent on the temperature changes, and the major fraction 



of the carriers contribute to non-radiative recombination and carrier leakage, resulting 

in low efficiency (5). Taking these conversion efficiencies (η) of the diode from the 

experimental results, in which the Inard is defined as: 

 rad
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Thus the ILED and IPD can be summarized as: 
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ILED vs. V and IPD vs. V under different illumination conditions are plotted in Figures 

2h and S7a. 

In the optoelectronic upconversion device, the double junction GaAs photodiode 

structure is connected in series to the InGaP LED structure. Under illumination, the 

current and voltage of the integrated design should satisfy: 

 LED PD

LED PD f LED LED PD PD

I I

V V V I R I R




   
  (10) 

where Vf = 0.4 V is a fitting value representing the discrepancy between the 

theoretical and experimental output voltages of the double junction GaAs photodiode. 

RLED = RPD = 150 Ω are series resistances within the device circuit. By solving Eq. 

(10), we can obtain intensity vs. temperature (red curve) in Figure 1e. 
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Figure S1

Figure S1. Schematic drawing of the band structure for our optoelectronic upconversion
device.
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Figure S3. (a) Schematic diagram of the optical setup for temperature sensing based on PL 
changes of the optoelectronic upconversion device. (b) Optical transmission spectra of 
fluorescence filter combinations.
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Figure S5. Measured peak wavelength and PL intensity of the upconverted red emission 
spectra as a function of temperature for a group of 10 different samples. 
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Figure S6. (a) Upconverted emission spectra and (b) signal to noise ratio (SNR) of the 
optoelectronic upconversion device at the representative temperatures of 27 ºC, 48 ºC, 65 
ºC, and 90 ºC. (c) The temperature detection accuracy based on peak wavelength shift and 
intensity changes by noting the equivalency their standard deviation to temperature 
changes in Figure 2e. 
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Figure S7. (a) Calculated current–voltage curves of the InGaP LED and the GaAs 
photodiode structures for the optoelectronic upconversion device at varied temperatures 
from 25 ºC to 90 ºC, under the different light intensities from 1 mW cm-2 to 200 mW cm-2. 
(b) Corresponding temperature-dependent intensity changes.
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Figure S8. Photographs showing photoluminance intensity changes of an upconversion
device, with the temperature increasing from ~26 ºC to 92 ºC. 
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Figure S9. (a) Measured PL intensity and corresponding temperature values under cyclic 
temperature changes between 28 ºC and 41 ºC. (b) The stability of the optoelectronic 
upconversion device at 29 ºC, 40 ºC, 51 ºC, 71 ºC, and 90 ºC, after the heating plate 
stabilizes.
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Figure S10. Transfer printing a free-standing microscale upconversion device from a 
thermal release tape to the optical fiber tip.

Figure S10



500 m

Figure S11. Cross-sectional view of the microscope image for the optoelectronic 
upconversion device integrated on the fiber optics, in which the fiber tip is encapsulated 
with a bilayer of parylene (~10 µm) and PDMS (~20 µm) . 
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Figure S12. Stability of PL signals recorded from the fiber sensor under vibration 
conditions, in which the fiber bending angle range is about +/−30º.
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Figure S13. (a) PL emission recorded from the fiber sensor at different temperatures (25–
50 ºC) in PBS. (b) Calculated (dash line) and measured (dots) emission peak wavelength 
and PL intensity as a function of temperature. (c) Recorded PL peak wavelength and 
intensity from the fiber sensor, in response to human respiration. Data are used to plot 
Figure 4e. (d) Recorded PL peak wavelength and intensity from the fiber sensor, obtained 
in the mouse brain. Data are used to plot Figure 4h. 
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Figure S14. Calculated (dash line) and measured (dots) peak wavelength and PL intensity 
of the upconverted emission as a function of temperature, corresponding to results in (a) 
human respiration in Figure 4e and (b) the mouse brain in Figure 4h. 
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Movie S1. Spatially resolved dynamic PL variations in response to temperature changes 
based on an optoelectronic upconversion device array.
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Movie S2. Dynamic temperature signals during exhaling activities obtained by the 
fiber sensor based on the emission peak wavelength shifts and PL intensity changes, 
compared with results simultaneously recorded by the thermocouple.

Movie S2
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